Machine learning based decision support for many-objective optimization problems
نویسندگان
چکیده
Multiple Criteria Decision-Making (MCDM) based Multi-objective Evolutionary Algorithms (MOEAs) are increasingly becoming popular for dealing with optimization problems with more than three objectives, commonly termed as many-objective optimization problems (MaOPs). These algorithms elicit preferences from a single or multiple Decision Makers (DMs), a priori or interactively, to guide the search towards the solutions most preferred by the DM(s), as against the whole Pareto-optimal Front (POF). Despite its promise for dealing with MaOPs, the utility of this approach is impaired by the lack of— objectivity; repeatability; consistency; and coherence in DM's preferences. This paper proposes a machine learning based framework to counter the above limitations. Towards it, the preference-structure of the different objectives embedded in the problem model is learnt in terms of: a smallest set of conflicting objectives which can generate the same POF as the original problem; the smallest objective sets corresponding to pre-specified errors; and the objective sets of pre-specified sizes that correspond to minimum error. While the focus is on demonstrating how the proposed framework could serve as a decision support for the DM, its performance is also studied vis-à-vis an alternative approach (based on dominance relation preservation), for a wide range of test problems and a real-world problem. The results mark a new direction for MCDM based MOEAs for MaOPs. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملThe Adaptive Route
In many optimization and decision problems the objective function can be expressed as a linear combination of competing criteria, the weights of which specify the relative importance of the criteria for the user. We consider the problem of learning such a \subjective" function from preference judgments collected from traces of user interactions. We propose a new algorithm for that task based on...
متن کاملOn Stochastic Optimization and Statistical Learning in Reproducing Kernel Hilbert Spaces by Support Vector Machines (SVM)
The paper studies stochastic optimization problems in Reproducing Kernel Hilbert Spaces (RKHS). The objective function of such problems is a mathematical expectation functional depending on decision rules (or strategies), i.e. on functions of observed random parameters. Feasible rules are restricted to belong to a RKHS. This kind of problems arises in on-line decision making and in statistical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 146 شماره
صفحات -
تاریخ انتشار 2014